Split gfx context & swapchain

This commit is contained in:
Przemyslaw Gasinski 2024-09-02 18:07:09 +02:00
parent 401f82c523
commit d318dfa4a2
6 changed files with 297 additions and 285 deletions

View file

@ -7,6 +7,7 @@ const img = @import("zstbi");
const validation = @import("./validation_layers.zig");
const Swapchain = @import("Swapchain.zig");
const QueueUtils = @import("queue_utils.zig");
const device_extensions = [_][*:0]const u8{vk.extensions.khr_swapchain.name};
@ -23,15 +24,6 @@ pub const apis: []const vk.ApiInfo = &.{
const enable_validation_layers = builtin.mode == .Debug;
const validation_layers = [_][*:0]const u8{"VK_LAYER_KHRONOS_validation"};
const QueueFamilyIndices = struct {
graphics_family: ?u32 = null,
presentation_family: ?u32 = null,
fn isValid(self: QueueFamilyIndices) bool {
return self.graphics_family != null and self.presentation_family != null;
}
};
const BaseDispatch = vk.BaseWrapper(apis);
const InstanceDispatch = vk.InstanceWrapper(apis);
const DeviceDispatch = vk.DeviceWrapper(apis);
@ -171,7 +163,7 @@ fn getPhysicalDevice(self: *Self) !void {
}
fn createLogicalDevice(self: *Self) !void {
const indices = try self.getQueueFamilies(self.physical_device);
const indices = try QueueUtils.getQueueFamilies(self.*, self.physical_device);
// 1 is the highest priority
const priority = [_]f32{1};
@ -214,7 +206,7 @@ fn createLogicalDevice(self: *Self) !void {
self.device = Device.init(device_handle, vkd);
const queues = try self.getDeviceQueues();
const queues = try QueueUtils.getDeviceQueues(self.*);
self.graphics_queue = Queue.init(queues[0], self.device.wrapper);
self.presentation_queue = Queue.init(queues[1], self.device.wrapper);
@ -237,43 +229,6 @@ fn getRequiredExtensions(self: Self) ![][*:0]const u8 {
return extensions;
}
fn getQueueFamilies(self: Self, pdev: vk.PhysicalDevice) !QueueFamilyIndices {
var indices: QueueFamilyIndices = .{ .graphics_family = null };
var queue_family_count: u32 = 0;
self.instance.getPhysicalDeviceQueueFamilyProperties(pdev, &queue_family_count, null);
const queue_family_list = try self.allocator.alloc(vk.QueueFamilyProperties, queue_family_count);
defer self.allocator.free(queue_family_list);
self.instance.getPhysicalDeviceQueueFamilyProperties(pdev, &queue_family_count, queue_family_list.ptr);
for (queue_family_list, 0..) |queue_family, i| {
if (queue_family.queue_count > 0 and queue_family.queue_flags.graphics_bit) {
indices.graphics_family = @intCast(i);
}
const presentation_support = try self.instance.getPhysicalDeviceSurfaceSupportKHR(pdev, @intCast(i), self.surface);
if (queue_family.queue_count > 0 and presentation_support == vk.TRUE) {
indices.presentation_family = @intCast(i);
}
if (indices.isValid()) {
return indices;
}
}
unreachable;
}
fn getDeviceQueues(self: Self) ![2]vk.Queue {
const indices = try self.getQueueFamilies(self.physical_device);
const graphics_queue = self.device.getDeviceQueue(indices.graphics_family.?, 0);
const presentation_queue = self.device.getDeviceQueue(indices.presentation_family.?, 0);
return .{ graphics_queue, presentation_queue };
}
fn checkInstanceExtensions(self: Self, required_extensions: *const [][*:0]const u8) !bool {
var prop_count: u32 = 0;
_ = try self.vkb.enumerateInstanceExtensionProperties(null, &prop_count, null);
@ -330,13 +285,13 @@ fn checkDeviceSuitable(self: Self, pdev: vk.PhysicalDevice) bool {
}
const pdev_features = self.instance.getPhysicalDeviceFeatures(pdev);
const queue_family_indices = self.getQueueFamilies(pdev) catch return false;
const queue_family_indices = QueueUtils.getQueueFamilies(self, pdev) catch return false;
const extension_support = self.checkDeviceExtensions(pdev) catch return false;
const swapchain_details = Swapchain.getSwapchainDetails(
self.allocator,
self.instance,
self.physical_device,
pdev,
self.surface,
) catch return false;
defer self.allocator.free(swapchain_details.formats);

View file

@ -4,8 +4,8 @@ const zm = @import("zmath");
const ai = @import("assimp.zig").c;
const Mesh = @import("Mesh.zig");
const Device = @import("vulkan_renderer.zig").Device;
const Instance = @import("vulkan_renderer.zig").Instance;
const Device = @import("Context.zig").Device;
const Instance = @import("Context.zig").Instance;
const Vertex = @import("utilities.zig").Vertex;
const Self = @This();

View file

@ -4,6 +4,8 @@ const sdl = @import("sdl");
const Context = @import("Context.zig");
const Instance = Context.Instance;
const QueueUtils = @import("queue_utils.zig");
const Utilities = @import("utilities.zig");
pub const SwapchainDetails = struct {
surface_capabilities: vk.SurfaceCapabilitiesKHR,
@ -22,11 +24,14 @@ allocator: std.mem.Allocator,
ctx: Context,
swapchain: vk.SwapchainKHR,
handle: vk.SwapchainKHR,
swapchain_images: []SwapchainImage,
swapchain_framebuffers: []vk.Framebuffer,
swapchain_image_format: vk.Format,
extent: vk.Extent2D,
pub fn create(allocator: std.mem.Allocator, context: Context) !Self {
var self: Self = undefined;
@ -42,7 +47,7 @@ pub fn create(allocator: std.mem.Allocator, context: Context) !Self {
// 2. Choose best presentation mode
const present_mode = chooseBestPresentationMode(swapchain_details.presentation_modes);
// 3. Choose swapchain image resolution
const extent = chooseSwapExtent(&context.window, swapchain_details.surface_capabilities);
const extent = chooseSwapExtent(&self.ctx.window, swapchain_details.surface_capabilities);
// How many images are in the swapchain? Get 1 more than the minimum to allow triple buffering
var image_count: u32 = swapchain_details.surface_capabilities.min_image_count + 1;
@ -71,7 +76,7 @@ pub fn create(allocator: std.mem.Allocator, context: Context) !Self {
};
// Get queue family indices
const family_indices = try self.getQueueFamilies(self.physical_device);
const family_indices = try QueueUtils.getQueueFamilies(self.ctx, self.ctx.physical_device);
// If graphic and presentation families are different, then swapchain must let images be shared between families
@ -86,18 +91,18 @@ pub fn create(allocator: std.mem.Allocator, context: Context) !Self {
swapchain_create_info.p_queue_family_indices = &qfi;
}
self.swapchain = try self.device.createSwapchainKHR(&swapchain_create_info, null);
self.handle = try self.ctx.device.createSwapchainKHR(&swapchain_create_info, null);
self.swapchain_image_format = surface_format.format;
self.extent = extent;
// Swapchain images
var swapchain_image_count: u32 = 0;
_ = try self.device.getSwapchainImagesKHR(self.swapchain, &swapchain_image_count, null);
_ = try self.ctx.device.getSwapchainImagesKHR(self.handle, &swapchain_image_count, null);
const images = try self.allocator.alloc(vk.Image, swapchain_image_count);
defer self.allocator.free(images);
_ = try self.device.getSwapchainImagesKHR(self.swapchain, &swapchain_image_count, images.ptr);
_ = try self.ctx.device.getSwapchainImagesKHR(self.handle, &swapchain_image_count, images.ptr);
self.swapchain_images = try self.allocator.alloc(SwapchainImage, swapchain_image_count);
@ -111,6 +116,78 @@ pub fn create(allocator: std.mem.Allocator, context: Context) !Self {
return self;
}
pub fn createImage(
self: *Self,
width: u32,
height: u32,
format: vk.Format,
tiling: vk.ImageTiling,
use_flags: vk.ImageUsageFlags,
prop_flags: vk.MemoryPropertyFlags,
image_memory: *vk.DeviceMemory,
) !vk.Image {
// -- Create Image --
const image_create_info: vk.ImageCreateInfo = .{
.image_type = .@"2d", // Type of image (1D, 2D or 3D)
.extent = .{
.width = width, // Width of image extent
.height = height, // Height of image extent
.depth = 1, // Depth of image (just 1, no 3D aspecct)
},
.mip_levels = 1, // Number of mipmap levels
.array_layers = 1, // Number of level in image array
.format = format, // Format type of image
.tiling = tiling, // How image data should be tiled (arranged for optimal reading)
.initial_layout = .undefined, // Layout of image data on creation
.usage = use_flags, // Bit flags defining what image will be used for
.samples = .{ .@"1_bit" = true }, // Number of samples for multi-sampling
.sharing_mode = .exclusive, // Whether image can be shared between queues
};
const image = try self.ctx.device.createImage(&image_create_info, null);
// -- Create memory for image --
// Get memory requirements for a type of image
const memory_requirements = self.ctx.device.getImageMemoryRequirements(image);
// Allocate memory using image requirements and user-defined properties
const memory_alloc_info: vk.MemoryAllocateInfo = .{
.allocation_size = memory_requirements.size,
.memory_type_index = Utilities.findMemoryTypeIndex(self.ctx.physical_device, self.ctx.instance, memory_requirements.memory_type_bits, prop_flags),
};
image_memory.* = try self.ctx.device.allocateMemory(&memory_alloc_info, null);
// Connect memory to image
try self.ctx.device.bindImageMemory(image, image_memory.*, 0);
return image;
}
pub fn createImageView(self: Self, image: vk.Image, format: vk.Format, aspect_flags: vk.ImageAspectFlags) !vk.ImageView {
const image_view_create_info: vk.ImageViewCreateInfo = .{
.image = image,
.format = format,
.view_type = .@"2d",
.components = .{
// Used for remapping rgba values to other rgba values
.r = .identity,
.g = .identity,
.b = .identity,
.a = .identity,
},
.subresource_range = .{
.aspect_mask = aspect_flags, // Which aspect of image to view (e.g.: colour, depth, stencil, etc...)
.base_mip_level = 0, // Start mipmap level to view from
.level_count = 1, // Number of mipmap levels to view
.base_array_layer = 0, // Start array level to view from
.layer_count = 1, // Number of array levels to view
},
};
return try self.ctx.device.createImageView(&image_view_create_info, null);
}
pub fn getSwapchainDetails(allocator: std.mem.Allocator, instance: Instance, pdev: vk.PhysicalDevice, surface: vk.SurfaceKHR) !SwapchainDetails {
// Capabilities
const surface_capabilities = try instance.getPhysicalDeviceSurfaceCapabilitiesKHR(pdev, surface);

53
src/queue_utils.zig Normal file
View file

@ -0,0 +1,53 @@
const std = @import("std");
const vk = @import("vulkan");
const Context = @import("Context.zig");
const Instance = Context.Instance;
const Device = Context.Device;
pub const QueueFamilyIndices = struct {
graphics_family: ?u32 = null,
presentation_family: ?u32 = null,
pub fn isValid(self: QueueFamilyIndices) bool {
return self.graphics_family != null and self.presentation_family != null;
}
};
pub fn getQueueFamilies(ctx: Context, pdev: vk.PhysicalDevice) !QueueFamilyIndices {
var indices: QueueFamilyIndices = .{ .graphics_family = null };
var queue_family_count: u32 = 0;
ctx.instance.getPhysicalDeviceQueueFamilyProperties(pdev, &queue_family_count, null);
const queue_family_list = try ctx.allocator.alloc(vk.QueueFamilyProperties, queue_family_count);
defer ctx.allocator.free(queue_family_list);
ctx.instance.getPhysicalDeviceQueueFamilyProperties(pdev, &queue_family_count, queue_family_list.ptr);
for (queue_family_list, 0..) |queue_family, i| {
if (queue_family.queue_count > 0 and queue_family.queue_flags.graphics_bit) {
indices.graphics_family = @intCast(i);
}
const presentation_support = try ctx.instance.getPhysicalDeviceSurfaceSupportKHR(pdev, @intCast(i), ctx.surface);
if (queue_family.queue_count > 0 and presentation_support == vk.TRUE) {
indices.presentation_family = @intCast(i);
}
if (indices.isValid()) {
return indices;
}
}
unreachable;
}
pub fn getDeviceQueues(ctx: Context) ![2]vk.Queue {
const indices = try getQueueFamilies(ctx, ctx.physical_device);
const graphics_queue = ctx.device.getDeviceQueue(indices.graphics_family.?, 0);
const presentation_queue = ctx.device.getDeviceQueue(indices.presentation_family.?, 0);
return .{ graphics_queue, presentation_queue };
}

View file

@ -1,8 +1,8 @@
const std = @import("std");
const vk = @import("vulkan");
const Instance = @import("vulkan_renderer.zig").Instance;
const Device = @import("vulkan_renderer.zig").Device;
const Instance = @import("Context.zig").Instance;
const Device = @import("Context.zig").Device;
const CommandBuffer = @import("vulkan_renderer.zig").CommandBuffer;
pub const Vector3 = @Vector(3, f32);

View file

@ -7,6 +7,7 @@ const zm = @import("zmath");
const img = @import("zstbi");
const ai = @import("assimp.zig").c;
const QueueUtils = @import("queue_utils.zig");
const StringUtils = @import("string_utils.zig");
const Utilities = @import("utilities.zig");
const Vertex = Utilities.Vertex;
@ -39,8 +40,7 @@ pub const VulkanRenderer = struct {
current_frame: u32 = 0,
context: Context,
ctx: Context,
swapchain: Swapchain,
// Scene settings
@ -98,9 +98,7 @@ pub const VulkanRenderer = struct {
graphics_command_pool: vk.CommandPool,
// Utilities
swapchain_image_format: vk.Format,
depth_format: vk.Format,
extent: vk.Extent2D,
// Synchronisation
image_available: [MAX_FRAME_DRAWS]vk.Semaphore,
@ -110,9 +108,10 @@ pub const VulkanRenderer = struct {
pub fn init(allocator: std.mem.Allocator, window: sdl.Window) !Self {
var self: Self = undefined;
self.context = try Context.init(allocator, window);
self.allocator = allocator;
self.ctx = try Context.init(allocator, window);
self.current_frame = 0;
self.swapchain = try Swapchain.create(allocator, self.context);
self.swapchain = try Swapchain.create(allocator, self.ctx);
try self.createColourBufferImage();
try self.createDepthBufferImage();
@ -123,7 +122,7 @@ pub const VulkanRenderer = struct {
try self.createFramebuffers();
try self.createCommandPool();
self.sampler_descriptor_sets = try std.ArrayList(vk.DescriptorSet).initCapacity(self.allocator, self.swapchain_images.len);
self.sampler_descriptor_sets = try std.ArrayList(vk.DescriptorSet).initCapacity(self.allocator, self.swapchain.swapchain_images.len);
try self.createCommandBuffers();
try self.createTextureSampler();
@ -139,7 +138,7 @@ pub const VulkanRenderer = struct {
self.texture_image_views = std.ArrayList(vk.ImageView).init(self.allocator);
self.model_list = std.ArrayList(MeshModel).init(allocator);
const aspect: f32 = @as(f32, @floatFromInt(self.extent.width)) / @as(f32, @floatFromInt(self.extent.height));
const aspect: f32 = @as(f32, @floatFromInt(self.swapchain.extent.width)) / @as(f32, @floatFromInt(self.swapchain.extent.height));
self.ubo_view_projection.projection = zm.perspectiveFovRh(
std.math.degreesToRadians(45.0),
aspect,
@ -172,19 +171,19 @@ pub const VulkanRenderer = struct {
pub fn draw(self: *Self) !void {
// Wait for given fence to signal (open) from last draw before continuing
_ = try self.device.waitForFences(
_ = try self.ctx.device.waitForFences(
1,
@ptrCast(&self.draw_fences[self.current_frame]),
vk.TRUE,
std.math.maxInt(u64),
);
// Manually reset (close) fences
try self.device.resetFences(1, @ptrCast(&self.draw_fences[self.current_frame]));
try self.ctx.device.resetFences(1, @ptrCast(&self.draw_fences[self.current_frame]));
// -- Get next image
// Get index of next image to be drawn to, and signal semaphore when ready to be drawn to
const image_index_result = try self.device.acquireNextImageKHR(
self.swapchain,
const image_index_result = try self.ctx.device.acquireNextImageKHR(
self.swapchain.handle,
std.math.maxInt(u64),
self.image_available[self.current_frame],
.null_handle,
@ -208,26 +207,26 @@ pub const VulkanRenderer = struct {
};
// Submit command buffer to queue
try self.device.queueSubmit(self.graphics_queue.handle, 1, @ptrCast(&submit_info), self.draw_fences[self.current_frame]);
try self.ctx.device.queueSubmit(self.ctx.graphics_queue.handle, 1, @ptrCast(&submit_info), self.draw_fences[self.current_frame]);
// -- Present rendered image to screen
const present_info: vk.PresentInfoKHR = .{
.wait_semaphore_count = 1, // Number of semaphores to wait on
.p_wait_semaphores = @ptrCast(&self.render_finished[self.current_frame]), // Semaphores to wait on
.swapchain_count = 1, // Number of swapchains to present to
.p_swapchains = @ptrCast(&self.swapchain), // Swapchains to present images to
.p_swapchains = @ptrCast(&self.swapchain.handle), // Swapchains to present images to
.p_image_indices = @ptrCast(&image_index_result.image_index), // Index of images in swapchains to present
};
// Present image
_ = try self.device.queuePresentKHR(self.presentation_queue.handle, &present_info);
_ = try self.ctx.device.queuePresentKHR(self.ctx.presentation_queue.handle, &present_info);
// Get next frame (use % to keep the current frame below MAX_FRAME_DRAWS)
self.current_frame = (self.current_frame + 1) % MAX_FRAME_DRAWS;
}
pub fn deinit(self: *Self) void {
self.device.deviceWaitIdle() catch undefined;
self.ctx.device.deviceWaitIdle() catch undefined;
for (0..self.model_list.items.len) |i| {
self.model_list.items[i].destroy();
@ -239,16 +238,16 @@ pub const VulkanRenderer = struct {
}
self.image_files.deinit();
self.device.destroySampler(self.texture_sampler, null);
self.ctx.device.destroySampler(self.texture_sampler, null);
for (
self.texture_images.items,
self.texture_image_memory.items,
self.texture_image_views.items,
) |tex_image, tex_image_memory, tex_image_view| {
self.device.destroyImage(tex_image, null);
self.device.freeMemory(tex_image_memory, null);
self.device.destroyImageView(tex_image_view, null);
self.ctx.device.destroyImage(tex_image, null);
self.ctx.device.freeMemory(tex_image_memory, null);
self.ctx.device.destroyImageView(tex_image_view, null);
}
self.texture_images.deinit();
@ -256,9 +255,9 @@ pub const VulkanRenderer = struct {
self.texture_image_views.deinit();
for (0..self.depth_buffer_image.len) |i| {
self.device.destroyImageView(self.depth_buffer_image_view[i], null);
self.device.destroyImage(self.depth_buffer_image[i], null);
self.device.freeMemory(self.depth_buffer_image_memory[i], null);
self.ctx.device.destroyImageView(self.depth_buffer_image_view[i], null);
self.ctx.device.destroyImage(self.depth_buffer_image[i], null);
self.ctx.device.freeMemory(self.depth_buffer_image_memory[i], null);
}
self.allocator.free(self.depth_buffer_image);
@ -266,61 +265,61 @@ pub const VulkanRenderer = struct {
self.allocator.free(self.depth_buffer_image_view);
for (0..self.colour_buffer_image.len) |i| {
self.device.destroyImageView(self.colour_buffer_image_view[i], null);
self.device.destroyImage(self.colour_buffer_image[i], null);
self.device.freeMemory(self.colour_buffer_image_memory[i], null);
self.ctx.device.destroyImageView(self.colour_buffer_image_view[i], null);
self.ctx.device.destroyImage(self.colour_buffer_image[i], null);
self.ctx.device.freeMemory(self.colour_buffer_image_memory[i], null);
}
self.allocator.free(self.colour_buffer_image);
self.allocator.free(self.colour_buffer_image_memory);
self.allocator.free(self.colour_buffer_image_view);
self.device.destroyDescriptorPool(self.input_descriptor_pool, null);
self.device.destroyDescriptorPool(self.descriptor_pool, null);
self.device.destroyDescriptorSetLayout(self.descriptor_set_layout, null);
self.device.destroyDescriptorPool(self.sampler_descriptor_pool, null);
self.device.destroyDescriptorSetLayout(self.sampler_set_layout, null);
self.device.destroyDescriptorSetLayout(self.input_set_layout, null);
self.ctx.device.destroyDescriptorPool(self.input_descriptor_pool, null);
self.ctx.device.destroyDescriptorPool(self.descriptor_pool, null);
self.ctx.device.destroyDescriptorSetLayout(self.descriptor_set_layout, null);
self.ctx.device.destroyDescriptorPool(self.sampler_descriptor_pool, null);
self.ctx.device.destroyDescriptorSetLayout(self.sampler_set_layout, null);
self.ctx.device.destroyDescriptorSetLayout(self.input_set_layout, null);
self.sampler_descriptor_sets.deinit();
self.allocator.free(self.input_descriptor_sets);
for (0..self.swapchain_images.len) |i| {
self.device.destroyBuffer(self.vp_uniform_buffer[i], null);
self.device.freeMemory(self.vp_uniform_buffer_memory[i], null);
for (0..self.swapchain.swapchain_images.len) |i| {
self.ctx.device.destroyBuffer(self.vp_uniform_buffer[i], null);
self.ctx.device.freeMemory(self.vp_uniform_buffer_memory[i], null);
}
self.allocator.free(self.vp_uniform_buffer);
self.allocator.free(self.vp_uniform_buffer_memory);
self.allocator.free(self.descriptor_sets);
for (0..MAX_FRAME_DRAWS) |i| {
self.device.destroySemaphore(self.render_finished[i], null);
self.device.destroySemaphore(self.image_available[i], null);
self.device.destroyFence(self.draw_fences[i], null);
self.ctx.device.destroySemaphore(self.render_finished[i], null);
self.ctx.device.destroySemaphore(self.image_available[i], null);
self.ctx.device.destroyFence(self.draw_fences[i], null);
}
self.allocator.free(self.command_buffers);
self.device.destroyCommandPool(self.graphics_command_pool, null);
self.ctx.device.destroyCommandPool(self.graphics_command_pool, null);
for (self.swapchain_framebuffers) |framebuffer| {
self.device.destroyFramebuffer(framebuffer, null);
for (self.swapchain.swapchain_framebuffers) |framebuffer| {
self.ctx.device.destroyFramebuffer(framebuffer, null);
}
self.allocator.free(self.swapchain_framebuffers);
self.allocator.free(self.swapchain.swapchain_framebuffers);
self.device.destroyPipeline(self.second_pipeline, null);
self.device.destroyPipelineLayout(self.second_pipeline_layout, null);
self.device.destroyPipeline(self.graphics_pipeline, null);
self.device.destroyPipelineLayout(self.pipeline_layout, null);
self.device.destroyRenderPass(self.render_pass, null);
self.ctx.device.destroyPipeline(self.second_pipeline, null);
self.ctx.device.destroyPipelineLayout(self.second_pipeline_layout, null);
self.ctx.device.destroyPipeline(self.graphics_pipeline, null);
self.ctx.device.destroyPipelineLayout(self.pipeline_layout, null);
self.ctx.device.destroyRenderPass(self.render_pass, null);
for (self.swapchain_images) |swapchain_image| {
self.device.destroyImageView(swapchain_image.image_view, null);
for (self.swapchain.swapchain_images) |swapchain_image| {
self.ctx.device.destroyImageView(swapchain_image.image_view, null);
}
self.allocator.free(self.swapchain_images);
self.device.destroySwapchainKHR(self.swapchain, null);
self.allocator.free(self.swapchain.swapchain_images);
self.ctx.device.destroySwapchainKHR(self.swapchain.handle, null);
self.context.deinit();
self.ctx.deinit();
}
fn createRenderPass(self: *Self) !void {
@ -332,8 +331,8 @@ pub const VulkanRenderer = struct {
// Colour attachment (input)
const colour_format = chooseSupportedFormat(
self.physical_device,
self.instance,
self.ctx.physical_device,
self.ctx.instance,
&[_]vk.Format{.r8g8b8a8_srgb},
.optimal,
.{ .color_attachment_bit = true },
@ -384,7 +383,7 @@ pub const VulkanRenderer = struct {
// Colour attachment of the render pass
const swapchain_colour_attachment: vk.AttachmentDescription = .{
.format = self.swapchain_image_format, // Format to use for attachment
.format = self.swapchain.swapchain_image_format, // Format to use for attachment
.samples = .{ .@"1_bit" = true }, // Number of samples to write for multisampling
.load_op = .clear, // Describes what to do with attachment before rendering
.store_op = .store, // Describes what to do with attachment after rendering
@ -471,7 +470,7 @@ pub const VulkanRenderer = struct {
.p_dependencies = &subpass_dependencies,
};
self.render_pass = try self.device.createRenderPass(&render_pass_create_info, null);
self.render_pass = try self.ctx.device.createRenderPass(&render_pass_create_info, null);
}
fn createDescriptorSetLayout(self: *Self) !void {
@ -495,7 +494,7 @@ pub const VulkanRenderer = struct {
};
// Create descriptor set layout
self.descriptor_set_layout = try self.device.createDescriptorSetLayout(&layout_create_info, null);
self.descriptor_set_layout = try self.ctx.device.createDescriptorSetLayout(&layout_create_info, null);
// -- Texture sampler descriptor set layout --
@ -514,7 +513,7 @@ pub const VulkanRenderer = struct {
.p_bindings = @ptrCast(&sampler_layout_binding),
};
self.sampler_set_layout = try self.device.createDescriptorSetLayout(&texture_layout_info, null);
self.sampler_set_layout = try self.ctx.device.createDescriptorSetLayout(&texture_layout_info, null);
// -- Create input attachment image descriptor set layout
// Colour input binding
@ -542,7 +541,7 @@ pub const VulkanRenderer = struct {
.p_bindings = &input_bindings,
};
self.input_set_layout = try self.device.createDescriptorSetLayout(&input_layout_create_info, null);
self.input_set_layout = try self.ctx.device.createDescriptorSetLayout(&input_layout_create_info, null);
}
fn createPushConstantRange(self: *Self) !void {
@ -555,14 +554,14 @@ pub const VulkanRenderer = struct {
}
fn createColourBufferImage(self: *Self) !void {
self.colour_buffer_image = try self.allocator.alloc(vk.Image, self.swapchain_images.len);
self.colour_buffer_image_memory = try self.allocator.alloc(vk.DeviceMemory, self.swapchain_images.len);
self.colour_buffer_image_view = try self.allocator.alloc(vk.ImageView, self.swapchain_images.len);
self.colour_buffer_image = try self.allocator.alloc(vk.Image, self.swapchain.swapchain_images.len);
self.colour_buffer_image_memory = try self.allocator.alloc(vk.DeviceMemory, self.swapchain.swapchain_images.len);
self.colour_buffer_image_view = try self.allocator.alloc(vk.ImageView, self.swapchain.swapchain_images.len);
// Get supported format for colour attachment
const colour_format = chooseSupportedFormat(
self.physical_device,
self.instance,
self.ctx.physical_device,
self.ctx.instance,
&[_]vk.Format{.r8g8b8a8_srgb},
.optimal,
.{ .color_attachment_bit = true },
@ -570,9 +569,9 @@ pub const VulkanRenderer = struct {
// Create colour buffers
for (0..self.colour_buffer_image.len) |i| {
self.colour_buffer_image[i] = try self.createImage(
self.extent.width,
self.extent.height,
self.colour_buffer_image[i] = try self.swapchain.createImage(
self.swapchain.extent.width,
self.swapchain.extent.height,
colour_format,
.optimal,
.{ .color_attachment_bit = true, .input_attachment_bit = true },
@ -580,7 +579,7 @@ pub const VulkanRenderer = struct {
&self.colour_buffer_image_memory[i],
);
self.colour_buffer_image_view[i] = try self.createImageView(
self.colour_buffer_image_view[i] = try self.swapchain.createImageView(
self.colour_buffer_image[i],
colour_format,
.{ .color_bit = true },
@ -589,15 +588,15 @@ pub const VulkanRenderer = struct {
}
fn createDepthBufferImage(self: *Self) !void {
self.depth_buffer_image = try self.allocator.alloc(vk.Image, self.swapchain_images.len);
self.depth_buffer_image_memory = try self.allocator.alloc(vk.DeviceMemory, self.swapchain_images.len);
self.depth_buffer_image_view = try self.allocator.alloc(vk.ImageView, self.swapchain_images.len);
self.depth_buffer_image = try self.allocator.alloc(vk.Image, self.swapchain.swapchain_images.len);
self.depth_buffer_image_memory = try self.allocator.alloc(vk.DeviceMemory, self.swapchain.swapchain_images.len);
self.depth_buffer_image_view = try self.allocator.alloc(vk.ImageView, self.swapchain.swapchain_images.len);
// Get supported depth buffer format
const formats = [_]vk.Format{ .d32_sfloat_s8_uint, .d32_sfloat, .d24_unorm_s8_uint };
self.depth_format = chooseSupportedFormat(
self.physical_device,
self.instance,
self.ctx.physical_device,
self.ctx.instance,
&formats,
.optimal,
.{ .depth_stencil_attachment_bit = true },
@ -605,9 +604,9 @@ pub const VulkanRenderer = struct {
for (0..self.depth_buffer_image.len) |i| {
// Create depth buffer image
self.depth_buffer_image[i] = try self.createImage(
self.extent.width,
self.extent.height,
self.depth_buffer_image[i] = try self.swapchain.createImage(
self.swapchain.extent.width,
self.swapchain.extent.height,
self.depth_format,
.optimal,
.{ .depth_stencil_attachment_bit = true, .input_attachment_bit = true },
@ -616,23 +615,23 @@ pub const VulkanRenderer = struct {
);
// Create depth buffer image view
self.depth_buffer_image_view[i] = try self.createImageView(self.depth_buffer_image[i], self.depth_format, .{ .depth_bit = true });
self.depth_buffer_image_view[i] = try self.swapchain.createImageView(self.depth_buffer_image[i], self.depth_format, .{ .depth_bit = true });
}
}
fn createGraphicsPipeline(self: *Self) !void {
// Create shader modules
const vert = try self.device.createShaderModule(&.{
const vert = try self.ctx.device.createShaderModule(&.{
.code_size = shaders.shader_vert.len,
.p_code = @ptrCast(&shaders.shader_vert),
}, null);
defer self.device.destroyShaderModule(vert, null);
defer self.ctx.device.destroyShaderModule(vert, null);
const frag = try self.device.createShaderModule(&.{
const frag = try self.ctx.device.createShaderModule(&.{
.code_size = shaders.shader_frag.len,
.p_code = @ptrCast(&shaders.shader_frag),
}, null);
defer self.device.destroyShaderModule(frag, null);
defer self.ctx.device.destroyShaderModule(frag, null);
// -- Shader stage creation information --
@ -707,15 +706,15 @@ pub const VulkanRenderer = struct {
self.viewport = .{
.x = 0.0,
.y = 0.0,
.width = @floatFromInt(self.extent.width),
.height = @floatFromInt(self.extent.height),
.width = @floatFromInt(self.swapchain.extent.width),
.height = @floatFromInt(self.swapchain.extent.height),
.min_depth = 0.0,
.max_depth = 1.0,
};
self.scissor = .{
.offset = .{ .x = 0, .y = 0 },
.extent = self.extent,
.extent = self.swapchain.extent,
};
const viewport_state_create_info: vk.PipelineViewportStateCreateInfo = .{
@ -793,7 +792,7 @@ pub const VulkanRenderer = struct {
.p_push_constant_ranges = @ptrCast(&self.push_constant_range),
};
self.pipeline_layout = try self.device.createPipelineLayout(&pipeline_layout_create_info, null);
self.pipeline_layout = try self.ctx.device.createPipelineLayout(&pipeline_layout_create_info, null);
// -- Depth stencil testing --
var depth_stencil_create_info: vk.PipelineDepthStencilStateCreateInfo = .{
@ -828,7 +827,7 @@ pub const VulkanRenderer = struct {
.base_pipeline_index = -1, // Or index of pipeline being created to derive from (in case creating multiple at once)
};
_ = try self.device.createGraphicsPipelines(
_ = try self.ctx.device.createGraphicsPipelines(
.null_handle,
1,
@ptrCast(&pipeline_create_info),
@ -838,17 +837,17 @@ pub const VulkanRenderer = struct {
// -- Create second pass pipeline
// Second pass shaders
const second_vert_shader_module = try self.device.createShaderModule(&.{
const second_vert_shader_module = try self.ctx.device.createShaderModule(&.{
.code_size = shaders.second_vert.len,
.p_code = @ptrCast(&shaders.second_vert),
}, null);
defer self.device.destroyShaderModule(second_vert_shader_module, null);
defer self.ctx.device.destroyShaderModule(second_vert_shader_module, null);
const second_frag_shader_module = try self.device.createShaderModule(&.{
const second_frag_shader_module = try self.ctx.device.createShaderModule(&.{
.code_size = shaders.second_frag.len,
.p_code = @ptrCast(&shaders.second_frag),
}, null);
defer self.device.destroyShaderModule(second_frag_shader_module, null);
defer self.ctx.device.destroyShaderModule(second_frag_shader_module, null);
// Set new shaders
vertex_shader_create_info.module = second_vert_shader_module;
@ -871,7 +870,7 @@ pub const VulkanRenderer = struct {
.p_set_layouts = @ptrCast(&self.input_set_layout),
};
self.second_pipeline_layout = try self.device.createPipelineLayout(&second_pipeline_layout_create_info, null);
self.second_pipeline_layout = try self.ctx.device.createPipelineLayout(&second_pipeline_layout_create_info, null);
pipeline_create_info.stage_count = @intCast(second_shader_stages.len);
pipeline_create_info.p_stages = &second_shader_stages;
@ -879,7 +878,7 @@ pub const VulkanRenderer = struct {
pipeline_create_info.subpass = 1;
// Create second pipeline
_ = try self.device.createGraphicsPipelines(
_ = try self.ctx.device.createGraphicsPipelines(
.null_handle,
1,
@ptrCast(&pipeline_create_info),
@ -889,10 +888,10 @@ pub const VulkanRenderer = struct {
}
fn createFramebuffers(self: *Self) !void {
self.swapchain_framebuffers = try self.allocator.alloc(vk.Framebuffer, self.swapchain_images.len);
self.swapchain.swapchain_framebuffers = try self.allocator.alloc(vk.Framebuffer, self.swapchain.swapchain_images.len);
// Create a frammebuffer for each swapchain image
for (self.swapchain_images, 0..) |swapchain_image, i| {
for (self.swapchain.swapchain_images, 0..) |swapchain_image, i| {
// Order matters
const attachments = [_]vk.ImageView{
swapchain_image.image_view,
@ -904,18 +903,18 @@ pub const VulkanRenderer = struct {
.render_pass = self.render_pass, // Render pass layout the frambuffer will be used with
.attachment_count = @intCast(attachments.len),
.p_attachments = &attachments, // List of attachments (1:1 with render pass)
.width = self.extent.width, // Framebuffer width
.height = self.extent.height, // Framebuffer height
.width = self.swapchain.extent.width, // Framebuffer width
.height = self.swapchain.extent.height, // Framebuffer height
.layers = 1, // Framebuffer layers
};
self.swapchain_framebuffers[i] = try self.device.createFramebuffer(&framebuffer_create_info, null);
self.swapchain.swapchain_framebuffers[i] = try self.ctx.device.createFramebuffer(&framebuffer_create_info, null);
}
}
fn createCommandPool(self: *Self) !void {
// Get indices of queue families from device
const queue_family_indices = try self.getQueueFamilies(self.physical_device);
const queue_family_indices = try QueueUtils.getQueueFamilies(self.ctx, self.ctx.physical_device);
const pool_create_info: vk.CommandPoolCreateInfo = .{
// Queue family type that buffers from this command pool will use
@ -924,12 +923,12 @@ pub const VulkanRenderer = struct {
};
// Create a graphics queue family command pool
self.graphics_command_pool = try self.device.createCommandPool(&pool_create_info, null);
self.graphics_command_pool = try self.ctx.device.createCommandPool(&pool_create_info, null);
}
fn createCommandBuffers(self: *Self) !void {
// Allocate one command buffer for each framebuffer
const command_buffer_handles = try self.allocator.alloc(vk.CommandBuffer, self.swapchain_framebuffers.len);
const command_buffer_handles = try self.allocator.alloc(vk.CommandBuffer, self.swapchain.swapchain_framebuffers.len);
defer self.allocator.free(command_buffer_handles);
self.command_buffers = try self.allocator.alloc(CommandBuffer, command_buffer_handles.len);
@ -940,9 +939,9 @@ pub const VulkanRenderer = struct {
};
// Allocate command buffers and place handles in array of buffers
try self.device.allocateCommandBuffers(&command_buffer_allocate_info, command_buffer_handles.ptr);
try self.ctx.device.allocateCommandBuffers(&command_buffer_allocate_info, command_buffer_handles.ptr);
for (command_buffer_handles, 0..) |command_buffer_handle, i| {
self.command_buffers[i] = CommandBuffer.init(command_buffer_handle, self.device.wrapper);
self.command_buffers[i] = CommandBuffer.init(command_buffer_handle, self.ctx.device.wrapper);
}
}
@ -952,9 +951,9 @@ pub const VulkanRenderer = struct {
// Semaphore creation information
for (0..MAX_FRAME_DRAWS) |i| {
self.image_available[i] = try self.device.createSemaphore(&.{}, null);
self.render_finished[i] = try self.device.createSemaphore(&.{}, null);
self.draw_fences[i] = try self.device.createFence(&fence_create_info, null);
self.image_available[i] = try self.ctx.device.createSemaphore(&.{}, null);
self.render_finished[i] = try self.ctx.device.createSemaphore(&.{}, null);
self.draw_fences[i] = try self.ctx.device.createFence(&fence_create_info, null);
}
}
@ -978,7 +977,7 @@ pub const VulkanRenderer = struct {
.compare_op = .never,
};
self.texture_sampler = try self.device.createSampler(&sampler_create_info, null);
self.texture_sampler = try self.ctx.device.createSampler(&sampler_create_info, null);
}
fn createUniformBuffers(self: *Self) !void {
@ -986,15 +985,15 @@ pub const VulkanRenderer = struct {
const vp_buffer_size: vk.DeviceSize = @sizeOf(UboViewProjection);
// One uniform buffer for each image (and by extension, command buffer)
self.vp_uniform_buffer = try self.allocator.alloc(vk.Buffer, self.swapchain_images.len);
self.vp_uniform_buffer_memory = try self.allocator.alloc(vk.DeviceMemory, self.swapchain_images.len);
self.vp_uniform_buffer = try self.allocator.alloc(vk.Buffer, self.swapchain.swapchain_images.len);
self.vp_uniform_buffer_memory = try self.allocator.alloc(vk.DeviceMemory, self.swapchain.swapchain_images.len);
// Create the uniform buffers
for (0..self.vp_uniform_buffer.len) |i| {
try Utilities.createBuffer(
self.physical_device,
self.instance,
self.device,
self.ctx.physical_device,
self.ctx.instance,
self.ctx.device,
vp_buffer_size,
.{ .uniform_buffer_bit = true },
.{ .host_visible_bit = true, .host_coherent_bit = true },
@ -1019,13 +1018,13 @@ pub const VulkanRenderer = struct {
// Data to create descriptor pool
const pool_create_info: vk.DescriptorPoolCreateInfo = .{
.max_sets = @intCast(self.swapchain_images.len), // Maximum number of descriptor sets that can be created from pool
.max_sets = @intCast(self.swapchain.swapchain_images.len), // Maximum number of descriptor sets that can be created from pool
.pool_size_count = @intCast(descriptor_pool_sizes.len), // Amount of pool sizes being passed
.p_pool_sizes = &descriptor_pool_sizes, // Pool sizes to create pool with
};
// Create descriptor pool
self.descriptor_pool = try self.device.createDescriptorPool(&pool_create_info, null);
self.descriptor_pool = try self.ctx.device.createDescriptorPool(&pool_create_info, null);
// -- Create sampler descriptor pool --
@ -1042,7 +1041,7 @@ pub const VulkanRenderer = struct {
.p_pool_sizes = @ptrCast(&sampler_pool_size),
};
self.sampler_descriptor_pool = try self.device.createDescriptorPool(&sampler_pool_create_info, null);
self.sampler_descriptor_pool = try self.ctx.device.createDescriptorPool(&sampler_pool_create_info, null);
// -- Create input attachment descriptor pool
// Colour attachment pool size
@ -1061,19 +1060,19 @@ pub const VulkanRenderer = struct {
// Create input attachment pool
const input_pool_create_info: vk.DescriptorPoolCreateInfo = .{
.max_sets = @intCast(self.swapchain_images.len),
.max_sets = @intCast(self.swapchain.swapchain_images.len),
.pool_size_count = @intCast(input_pool_sizes.len),
.p_pool_sizes = &input_pool_sizes,
};
self.input_descriptor_pool = try self.device.createDescriptorPool(&input_pool_create_info, null);
self.input_descriptor_pool = try self.ctx.device.createDescriptorPool(&input_pool_create_info, null);
}
fn createDescriptorSets(self: *Self) !void {
// One descriptor set for every buffer
self.descriptor_sets = try self.allocator.alloc(vk.DescriptorSet, self.swapchain_images.len);
self.descriptor_sets = try self.allocator.alloc(vk.DescriptorSet, self.swapchain.swapchain_images.len);
var set_layouts = try self.allocator.alloc(vk.DescriptorSetLayout, self.swapchain_images.len);
var set_layouts = try self.allocator.alloc(vk.DescriptorSetLayout, self.swapchain.swapchain_images.len);
defer self.allocator.free(set_layouts);
for (0..set_layouts.len) |i| {
set_layouts[i] = self.descriptor_set_layout;
@ -1082,15 +1081,15 @@ pub const VulkanRenderer = struct {
// Descriptor set allocation info
const set_alloc_info: vk.DescriptorSetAllocateInfo = .{
.descriptor_pool = self.descriptor_pool, // Pool to allocate descriptor set from
.descriptor_set_count = @intCast(self.swapchain_images.len), // Number of sets to allocate
.descriptor_set_count = @intCast(self.swapchain.swapchain_images.len), // Number of sets to allocate
.p_set_layouts = set_layouts.ptr, // Layouts to use to allocate sets (1:1 relationship)
};
// Allocate descriptor sets (multiple)
try self.device.allocateDescriptorSets(&set_alloc_info, self.descriptor_sets.ptr);
try self.ctx.device.allocateDescriptorSets(&set_alloc_info, self.descriptor_sets.ptr);
// Update all of descriptor set buffer bindings
for (0..self.swapchain_images.len) |i| {
for (0..self.swapchain.swapchain_images.len) |i| {
// -- View projection descriptor
// Buffer info and data offset info
const vp_buffer_info: vk.DescriptorBufferInfo = .{
@ -1115,15 +1114,15 @@ pub const VulkanRenderer = struct {
const set_writes = [_]vk.WriteDescriptorSet{vp_set_write};
// Update the descriptor sets with new buffer/binding info
self.device.updateDescriptorSets(@intCast(set_writes.len), &set_writes, 0, null);
self.ctx.device.updateDescriptorSets(@intCast(set_writes.len), &set_writes, 0, null);
}
}
fn createInputDescriptorSets(self: *Self) !void {
self.input_descriptor_sets = try self.allocator.alloc(vk.DescriptorSet, self.swapchain_images.len);
self.input_descriptor_sets = try self.allocator.alloc(vk.DescriptorSet, self.swapchain.swapchain_images.len);
// Fill array of layouts ready for set creation
var set_layouts = try self.allocator.alloc(vk.DescriptorSetLayout, self.swapchain_images.len);
var set_layouts = try self.allocator.alloc(vk.DescriptorSetLayout, self.swapchain.swapchain_images.len);
defer self.allocator.free(set_layouts);
for (0..set_layouts.len) |i| {
set_layouts[i] = self.input_set_layout;
@ -1132,15 +1131,15 @@ pub const VulkanRenderer = struct {
// Input attachment descriptor set allocation info
const set_alloc_info: vk.DescriptorSetAllocateInfo = .{
.descriptor_pool = self.input_descriptor_pool,
.descriptor_set_count = @intCast(self.swapchain_images.len),
.descriptor_set_count = @intCast(self.swapchain.swapchain_images.len),
.p_set_layouts = set_layouts.ptr,
};
// Allocate descriptor sets
try self.device.allocateDescriptorSets(&set_alloc_info, self.input_descriptor_sets.ptr);
try self.ctx.device.allocateDescriptorSets(&set_alloc_info, self.input_descriptor_sets.ptr);
// Update each descriptor set with input attachment
for (0..self.swapchain_images.len) |i| {
for (0..self.swapchain.swapchain_images.len) |i| {
// Colour attachment descriptor
const colour_attachment_descriptor: vk.DescriptorImageInfo = .{
.image_layout = .shader_read_only_optimal,
@ -1183,13 +1182,13 @@ pub const VulkanRenderer = struct {
const set_writes = [_]vk.WriteDescriptorSet{ colour_write, depth_write };
// Update descriptor sets
self.device.updateDescriptorSets(@intCast(set_writes.len), &set_writes, 0, null);
self.ctx.device.updateDescriptorSets(@intCast(set_writes.len), &set_writes, 0, null);
}
}
fn updateUniformBuffers(self: *Self, image_index: u32) !void {
// Copy VP data
const data = try self.device.mapMemory(
const data = try self.ctx.device.mapMemory(
self.vp_uniform_buffer_memory[image_index],
0,
@sizeOf(UboViewProjection),
@ -1198,7 +1197,7 @@ pub const VulkanRenderer = struct {
const vp_data: *UboViewProjection = @ptrCast(@alignCast(data));
vp_data.* = self.ubo_view_projection;
self.device.unmapMemory(self.vp_uniform_buffer_memory[image_index]);
self.ctx.device.unmapMemory(self.vp_uniform_buffer_memory[image_index]);
}
fn recordCommands(self: *Self, current_image: u32) !void {
@ -1219,11 +1218,11 @@ pub const VulkanRenderer = struct {
.render_pass = self.render_pass, // Render pass to begin
.render_area = .{
.offset = .{ .x = 0, .y = 0 }, // Start point of render pass in pixels
.extent = self.extent, // Size of region to run render pass on (starting at offset)
.extent = self.swapchain.extent, // Size of region to run render pass on (starting at offset)
},
.p_clear_values = &clear_values, // List of clear values
.clear_value_count = @intCast(clear_values.len),
.framebuffer = self.swapchain_framebuffers[current_image],
.framebuffer = self.swapchain.swapchain_framebuffers[current_image],
};
const command_buffer = self.command_buffers[current_image];
@ -1307,78 +1306,6 @@ pub const VulkanRenderer = struct {
try command_buffer.endCommandBuffer();
}
fn createImage(
self: *Self,
width: u32,
height: u32,
format: vk.Format,
tiling: vk.ImageTiling,
use_flags: vk.ImageUsageFlags,
prop_flags: vk.MemoryPropertyFlags,
image_memory: *vk.DeviceMemory,
) !vk.Image {
// -- Create Image --
const image_create_info: vk.ImageCreateInfo = .{
.image_type = .@"2d", // Type of image (1D, 2D or 3D)
.extent = .{
.width = width, // Width of image extent
.height = height, // Height of image extent
.depth = 1, // Depth of image (just 1, no 3D aspecct)
},
.mip_levels = 1, // Number of mipmap levels
.array_layers = 1, // Number of level in image array
.format = format, // Format type of image
.tiling = tiling, // How image data should be tiled (arranged for optimal reading)
.initial_layout = .undefined, // Layout of image data on creation
.usage = use_flags, // Bit flags defining what image will be used for
.samples = .{ .@"1_bit" = true }, // Number of samples for multi-sampling
.sharing_mode = .exclusive, // Whether image can be shared between queues
};
const image = try self.device.createImage(&image_create_info, null);
// -- Create memory for image --
// Get memory requirements for a type of image
const memory_requirements = self.device.getImageMemoryRequirements(image);
// Allocate memory using image requirements and user-defined properties
const memory_alloc_info: vk.MemoryAllocateInfo = .{
.allocation_size = memory_requirements.size,
.memory_type_index = Utilities.findMemoryTypeIndex(self.physical_device, self.instance, memory_requirements.memory_type_bits, prop_flags),
};
image_memory.* = try self.device.allocateMemory(&memory_alloc_info, null);
// Connect memory to image
try self.device.bindImageMemory(image, image_memory.*, 0);
return image;
}
fn createImageView(self: Self, image: vk.Image, format: vk.Format, aspect_flags: vk.ImageAspectFlags) !vk.ImageView {
const image_view_create_info: vk.ImageViewCreateInfo = .{
.image = image,
.format = format,
.view_type = .@"2d",
.components = .{
// Used for remapping rgba values to other rgba values
.r = .identity,
.g = .identity,
.b = .identity,
.a = .identity,
},
.subresource_range = .{
.aspect_mask = aspect_flags, // Which aspect of image to view (e.g.: colour, depth, stencil, etc...)
.base_mip_level = 0, // Start mipmap level to view from
.level_count = 1, // Number of mipmap levels to view
.base_array_layer = 0, // Start array level to view from
.layer_count = 1, // Number of array levels to view
},
};
return try self.device.createImageView(&image_view_create_info, null);
}
fn createTextureImage(self: *Self, file_name: []const u8) !u32 {
// Load image file
var width: u32 = undefined;
@ -1389,13 +1316,13 @@ pub const VulkanRenderer = struct {
// Create staging buffer to hold loaded data, ready to copy to device
var image_staging_buffer: vk.Buffer = undefined;
var image_staging_buffer_memory: vk.DeviceMemory = undefined;
defer self.device.destroyBuffer(image_staging_buffer, null);
defer self.device.freeMemory(image_staging_buffer_memory, null);
defer self.ctx.device.destroyBuffer(image_staging_buffer, null);
defer self.ctx.device.freeMemory(image_staging_buffer_memory, null);
try Utilities.createBuffer(
self.physical_device,
self.instance,
self.device,
self.ctx.physical_device,
self.ctx.instance,
self.ctx.device,
image_size,
.{ .transfer_src_bit = true },
.{ .host_visible_bit = true, .host_coherent_bit = true },
@ -1404,15 +1331,15 @@ pub const VulkanRenderer = struct {
);
// Copy data to staging buffer
const data = try self.device.mapMemory(image_staging_buffer_memory, 0, image_size, .{});
const data = try self.ctx.device.mapMemory(image_staging_buffer_memory, 0, image_size, .{});
const image_data: [*]u8 = @ptrCast(@alignCast(data));
@memcpy(image_data, image[0..]);
self.device.unmapMemory(image_staging_buffer_memory);
self.ctx.device.unmapMemory(image_staging_buffer_memory);
// Create image to hold final texture
var tex_image_memory: vk.DeviceMemory = undefined;
const tex_image: vk.Image = try self.createImage(
const tex_image: vk.Image = try self.swapchain.createImage(
width,
height,
.r8g8b8a8_srgb,
@ -1424,8 +1351,8 @@ pub const VulkanRenderer = struct {
// Transition image to be DST for copy operation
try Utilities.transitionImageLayout(
self.device,
self.graphics_queue.handle,
self.ctx.device,
self.ctx.graphics_queue.handle,
self.graphics_command_pool,
tex_image,
.undefined,
@ -1434,8 +1361,8 @@ pub const VulkanRenderer = struct {
// Copy data to image
try Utilities.copyImageBuffer(
self.device,
self.graphics_queue.handle,
self.ctx.device,
self.ctx.graphics_queue.handle,
self.graphics_command_pool,
image_staging_buffer,
tex_image,
@ -1445,8 +1372,8 @@ pub const VulkanRenderer = struct {
// Transition image to be shader readable for shader usage
try Utilities.transitionImageLayout(
self.device,
self.graphics_queue.handle,
self.ctx.device,
self.ctx.graphics_queue.handle,
self.graphics_command_pool,
tex_image,
.transfer_dst_optimal,
@ -1466,7 +1393,7 @@ pub const VulkanRenderer = struct {
const texture_image_loc = try self.createTextureImage(file_name);
// Create image view and add to list
const image_view = try self.createImageView(
const image_view = try self.swapchain.createImageView(
self.texture_images.items[texture_image_loc],
.r8g8b8a8_srgb,
.{ .color_bit = true },
@ -1522,10 +1449,10 @@ pub const VulkanRenderer = struct {
// Load in all our meshes
const model_meshes = try MeshModel.loadNode(
self.allocator,
self.instance,
self.physical_device,
self.device,
self.graphics_queue.handle,
self.ctx.instance,
self.ctx.physical_device,
self.ctx.device,
self.ctx.graphics_queue.handle,
self.graphics_command_pool,
scene.*.mRootNode,
scene,
@ -1550,7 +1477,7 @@ pub const VulkanRenderer = struct {
};
// Allocate descriptor sets
try self.device.allocateDescriptorSets(&set_alloc_info, @ptrCast(&descriptor_set));
try self.ctx.device.allocateDescriptorSets(&set_alloc_info, @ptrCast(&descriptor_set));
const image_info: vk.DescriptorImageInfo = .{
.image_layout = .shader_read_only_optimal, // Image layout when in use
@ -1571,7 +1498,7 @@ pub const VulkanRenderer = struct {
};
// Update the new descriptor set
self.device.updateDescriptorSets(1, @ptrCast(&descriptor_write), 0, null);
self.ctx.device.updateDescriptorSets(1, @ptrCast(&descriptor_write), 0, null);
try self.sampler_descriptor_sets.append(descriptor_set);